SECONDARY ELECTRON EMISSION:

EXPERIMENTAL RESULTS AND THEIR IMPLICATIONS

V. BAGLIN, I. COLLINS, O. GROBNER, B. HENRIST, N.HILLERET, G. VORLAUFER

CERN - LHC/VAC

1

SECONDARY ELECTRON YIELD BEFORE AND AFTER ELECTRON BOMBARDMENT

THE IMPORTANCE OF LOW ENERGY SECONDARY ELECTRONS

SECONDARY ELECTRON ENERGY DISTRIBUTION

REFLECTED ELECTRONS AT LOW ENERGY AND FITS FORMULAE

• MORE ABOUT CONDITIONING

THE INFLUENCE OF AIR EXPOSURE ON CONDITIONING

ELECTRON INDUCED DESORPTION η

RELATION BETWEEN η , δ , desorbed gas quantity

RELATION BETWEEN CLEANING AND CONDITIONING

AVERAGE SECONDARY ELECTRON YIELD OF 25 AS RECEIVED COPPER SAMPLE

VARIATION OF THE MAXIMUM SECONDARY ELECTRON YIELD WITH THE ELECTRON DOSE

DOSE (C/mm2)

SECONDARY ELECTRON YIELD

SECONDARY ELECTRON YIELD VERSUS ELECTRON ENERGY ION BOMBARDED COPPER

ENERGY DISTRIBUTION OF SECONDARY ELECTRON EMITTED BY COPPER

ENERGY DISTRIBUTION OF SECONDARY ELECTRON EMITTED BY COPPER

RATIO REFLECTED/TOTAL

NH – 2STREAMS/01

FOR E_p > 300 eV REFLECTED CONTRIBUTION NEGLIGIBLE

 $\delta_t = \delta_S + \delta_R$

SECONDARY / REFLECTED PROCESSES COMPLETELY DIFFERENT

MODEL FOR SECONDARY ELECTRON EMISSION ASSUMPTIONS : FOR SECONDARIES PRIMARY ELECTRON: CONSTANT ENERGY LOSS : $\frac{\partial E}{\partial z} = \frac{E}{R}$ E $\frac{\partial E}{\partial z} = \frac{E}{R}$ E $\frac{\partial E}{\partial z} = A \times \exp(-z/\lambda)$ E $\frac{\partial E}{\partial z} = \frac{E}{R}$ E $\frac{d}{dz} = \frac{E}{R}$ E $\frac{d}{dz$

NORMALISATION TO δ_m , E_m TO ELIMINATE PHYSICAL CONSTANTS (e.g. λ)

(D.C. Joy Journal of microscopy 147, 1, 51-64, 1987)

SIMPLIFIED BY M. FURMAN

$$\delta_{s} = \delta_{MAX} \frac{s \times (\frac{E_{p}}{E})}{s - 1 + \left(\frac{E_{p}}{E}\right)^{s}}$$

NH – 2STREAMS/01

MODEL FOR SECONDARY ELECTRON EMISSION

NUMERICAL VALUE TO FIT OUR EXPERIMENTAL DATA:

SAMPLE STATE	AS RECEIVED	FULLY CONDITIONED
$d_{_{MAX}}$	2.03	1.13
E_{MAX}	262	318
S	1.39	1.35

CU AS RECEIVED

IF LOW ENERGY ELECTRONS HAVE TO BE CONSIDERED:

REFLECTED NOT NEGLIGIBLE :

=> PRECEDING APPROXIMATION TO FIT HIGH ENERGY PART

NH – 2STREAMS/01

REFLECTED CONTRIBUTION

$$\delta_{t} = \delta_{S} + \delta_{R} \implies \delta_{R} = f \times \delta_{t} \Longrightarrow \delta_{t} = \delta_{S} + f \times \delta_{t}$$
$$\delta_{t} = \delta_{s} \times \frac{1}{(1-f)}$$

FRACTION OF REFLECTED ELECTRONS (f) : N_R / N_{TOT}

CAN BE MEASURED FROM PRECEDING CURVES

AND APPROXIMATED BY THE FOLLOWING RELATION:

$$\ln(f) = A_0 + A_1 \times (\ln(E_p + E_0)) + A_2 \times (\ln(E_p + E_0))^2 + A_3 \times (\ln(E_p + E_0))^3$$

¹(J.J. Scholtz, D. Dijkkamp, R.W.A. Schmitz, Philips J. Res. 50, 375-389, 1996).

USING: A0 = 20.699890, A1 = -7.07605, A2 = 0.483547, A3 = 0, E0 = 56.914686(Curve labelled FIT II low energy).

REFLECTED CONTRIBUTION

AN EXPONENTIAL LAW COULD ALSO BE USED BELOW 100 EV

$$f = R_0 \times \exp(-E_p / w)$$

USING: $R_0 = .64438713$, w = 43.2268304. (Curve labelled EXP FIT)

RANGE LIMITED 30 -> 100 eV (cf. Following curves)

CU AS RECEIVED

CU EXPOSED TO 0.01 C/mm2

CU AS RECEIVED

CU EXPOSED TO 0.01 C/mm2

ELECTRON BOMBARDMENT

DESORPTION AND SECONDARY ELECTRON EMISSION

VARIATION OF THE ELECTRON INDUCED DESORPTION WITH THE ELECTRON DOSE (AS RECEIVED COPPER)

VARIATION OF THE ELECTRON INDUCED DESORPTION WITH THE BEAM DOSE(AS RECEIVED COPPER)

VARIATION OF THE ELECTRON INDUCED DESORPTION AND OF THE SECONDARY ELECTRON YIELD WITH THE NUMBER OF MOLECULES DESORBED (AS RECEIVED COPPER)

TOTAL NUMBER OF DESORBED MOLECULES PER UNIT AREA (cm⁻²)

VARIATION OF THE ELECTRON INDUCED DESORPTION WITH THE NUMBER OF MOLECULES DESORBED(AS RECEIVED COPPER)

TOTAL NUMBER OF DESORBED MOLECULES PER UNIT AREA (Cm⁻²)

VARIATION OF THE DESORBED GAS QUANTITY AS A FUNCTION OF THE SECONDARY ELECTRON YIELD

RELEASED GAS QUANTITY

24

ELECTRON BOMBARDMENT

DESORPTION AND SECONDARY ELECTRON EMISSION

RELATIONS BETWEEN DESORPTION AND CONDITIONING

INFLUENCE OF CLEANLINESS: IN SITU A.G.D. CLEANED SAMPLES

VERY LOW DESORPTION YIELD PRODUCED:

S.E.Y. DECREASES WHEN AN A.G.D COPPER SURFACE IS EL. BOMBARDED

S.E.Y. INCREASES WHEN CONDITIONED CU IS A.G.D

THE CLEANEST SURFACE HAS NOT THE LOWEST SECONDARY ELECTRON YIELD

VARIATION OF THE SECONDARY ELECTRON DOSE

PROCEDURE FOR ION BOMBARDMENT

VARIATION OF THE S.E.Y. OF A CONDITIONNED COPPER SAMPLE DURING ARGON ION BOMBARDMENT

ELECTRON BOMBARDMENT

EFFECT OF VACUUM / AIR EXPOSURE

IMPORTANT DURING THE OPERATION OF AN ACCELERATOR

IS CONDITIONING LOST?

FOR HOW LONG??

VARIATION OF THE SECONDARY ELECTRON YIELD AFTER ELECTRON BOMBARDMENT

ELECTRON BOMBARDMENT

EFFECT OF VACUUM / AIR EXPOSURE

UNDER VACUUM A SLIGHT DECONDITIONING VISIBLE AFTER 100 HOURS

AFTER AIR EXPOSURE: BACK TO UNTREATED VALUE (10 DAYS)

BUT RECONDITIONING MUCH SHORTER (FACTOR 10 IN DOSE)

VARIATION OF THE ESCAPE DEPTH DURING ELECTRON / ION BOMBARDMENT

WHEN LOW ENERGY ELECTRONS ARE OF IMPORTANCE : REFLECTION MUST BE CONSIDERED

BASED ON ENERGY DISTRIBUTION MEASUREMENTS A FIT ALLOWS TO CALCULATE THE RATIO REFLECTED/TOTAL

BETTER APPROXIMATION AT ELECTRON ENERGIES < 50 eV

THE **SIMULTANEOUS** VARIATION OF **DESORPTION** AND ELECTRON **EMISSION** HAS BEEN STUDIED

PARALLEL REMOVAL OF ~ 10->100 MONOLAYERS OF GAS (H_2, CO, CO_2)

BUT CLEANEST SURFACE HAS NOT THE LOWEST YIELD : **PARALLEL # CAUSALITY**

RECONDITIONING AFTER AIR EXPOSURE IS APPROXIMATELY **10 TIMES FASTER**