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MotivationsMotivations

✎ For high intensity beam, it is increasingly important to develop an 
improved theoretical understanding of the influence of the intense self 
fields using a kinetic model based on the nonlinear Vlasov-Maxwell 
equations.

✓ Space charge effects and collective instabilities.

✓ Collective mode structures, growth rates, and thresholds.

✓ Damping mechanisms and wave-particle interaction.

✎ 3D multi-species nonlinear δf particle simulation code based on 
nonlinear Vlasov-Maxwell equations provides an effective tool for the 
investigating collective processes. Space charge effects and collective 
instabilities.

✓ Significantly reduced simulation noise.

✓ Linear instability and nonlinear properties.



Why the Maxwell EquationsWhy the Maxwell Equations

✐ For high intensity beams, the complete space charge impedance is a 3D 
Green’s function depending on  (z, a, m).

✐ For the study of collective instabilities in high intensity beams, the δ(z)
and δ(a) expansions of source for the space charge impedance are less
efficient, both analytically and numerically.

✐ Solving the Maxwell equations is more straightforward and analytically 
relevant. Numerically, more efficient expansions are often used.



Why the Why the Vlasov Vlasov EquationEquation

✎ For collective instabilities, damping mechanisms are important in 
determining the growth rates and thresholds.

✓ For the e-p instability in PSR, the macro-particle model predicts a 
growth rate 3000 times larger than the experimental value.

✎ Besides the conventional Landau damping, other important damping
mechanisms include:

✓ Longitudinal Landau damping due to momentum spread.

✓ Damping due to space charge induced tune spread.

✎ Important physics of wave-particle interaction.

✓ Landau damping induced emittance grow.

✓ Wave-particle interaction induces halo particles.



Physics of Collective InstabilitiesPhysics of Collective Instabilities

✎ Collective instabilities are the results of energy exchange between 
different degrees of freedom in systems with high beam intensities.

✓ e-p instability: energy exchange between protons and electrons.

✓ Pressure anisotropy instability (non-equal-partition mode): energy 
exchange between longitudinal and transverse direction.

✎ Energy exchange is mediated by the collective eigenmodes (excitations) 
existing in the system:

✓ e-p instability: plasma oscillations of protons and electrons.

✓ Pressure anisotropy instability (non-equal-partition mode): 
longitudinal (L1) and transverse (T2) eigenmodes .



Physics of Collective InstabilitiesPhysics of Collective Instabilities

✎ Analytically, instabilities happen when the eigen frequencies of different 
eigenmodes cross each other.

✓ e-p instability: ωe=ωp+kzVb.

✓ Pressure anisotropy instability: ωT2=ωL1.



Two-Stream Instability for Intense Ion Beams

➩ In the absence of background electrons, an intense nonneutral ion beam sup-
ports collective oscillations (plasma oscillations) with phase velocity ω/kz up-
shifted and downshifted relative to the average beam velocity βbc.

➩ Introduction of an (unwanted) electron component (produced, for example,
by secondary emission of electrons due to the interaction of halo ions with
the chamber wall) provides the free energy to drive the classical two-stream
instability.
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Two-Stream Instability for Intense Ion Beam

➩ Unlike the two-stream instability in a homogeneous neutral plasma, the two-
stream instability for an intense, thin ion beam depends strongly on:

 ❍ Transverse dynamics and geometry (rb/rw, kzrb).

 ❍ Degree of charge neutralization (f = n̂e/n̂b).

 ❍ Spread in transverse betatron frequencies.

 ❍ Axial momentum spread.

➩ Strong experimental evidence for two-species instabilities:

 ❍ Proton Storage Ring (PSR) at Los Alamos National Laboratory.

 ❍ Beam-ion instability in electron machines.

 ❍ Electron cloud instability in hadron machines.



Motivation

➩ Understand two-stream interaction process in high-intensity ion beams, and
identify optimum operating regimes for:

 ❍ Spallation Neutron Sources and Proton Storage Ring at LANL.

 ❍ Hadron colliders.

 ❍ Heavy ion fusion.

➩ For accelerator applications with high beam currents and charge densities, it
is increasingly important to develop an improved theoretical understanding
of the influence of the intense self fields using a kinetic model based on the
nonlinear Vlasov-Maxwell equations.

➩ 3D multi-species nonlinear δf particle simulation code based on nonlinear Vlasov-
Maxwell equations provides an effective tool for investigating collective pro-
cesses.



Theoretical Model — Nonlinear Vlasov-Maxwell System

➪ Thin, continuous, high-intensity ion beam (j = b) propagates in the z-direction
through background electron and ion components (j = e, i) described by dis-
tribution function fj(x, p, t).

➪ Transverse and axial particle velocities in a frame of reference moving with
axial velocity βjcêz are assumed to be nonrelativistic.

➪ Adopt a smooth-focusing model in which the focusing force is described by

F foc
j = −γjmjω

2
βjx⊥

➪ Self-electric and self-magnetic fields are expressed as Es = −∇φ(x, t) and
Bs = ∇× Az(x, t)êz.



Theoretical Model — Nonlinear Vlasov-Maxwell System

➪ Distribution functions and electromagnetic fields are described self-consistently
by the nonlinear Vlasov-Maxwell equations in the six-dimensional phase space
(x, p):

{ ∂

∂t
+ v · ∂

∂x
− [γjmjω

2
βjx⊥ + ej(∇φ − vz

c
∇⊥Az)] · ∂

∂p

}
fj(x, p, t) = 0

and

∇2φ = −4π
∑

j

ej

∫
d3pfj(x, p, t)

∇2Az = −4π
c

∑
j

ej

∫
d3pvzfj(x, p, t)



Nonlinear δf Particle Simulation Method

➪ Divide the distribution function into two parts: fj = fj0 + δfj .

➪ fj0 is a known solution to the nonlinear Vlasov-Maxwell equations.

➪ Determine numerically the evolution of the perturbed distribution function
δfj ≡ fj − fj0 .

➪ Advance the weight function defined by wj ≡ δfj/fj , together with the parti-
cles’ positions and momenta.

➪ Equations of motion for the particles are given by

dx⊥ji

dt
= (γjmj)−1p⊥ji,

dzji

dt
= vzji = βjc + γ−3

j m−1
j (pzji − γjmjβjc),

dpji

dt
= −γjmjω

2
βjx⊥ji − ej(∇φ − vzji

c
∇⊥Az)

➪ Weight functions wj are carried by the simulation particles, and the dynamical
equations for wj are derived from the definition of wj and the Vlasov equation.



Nonlinear δf Particle Simulation Method

➪ Weight functions evolve according to

dwji

dt
= −(1 − wji)

1
fj0

∂fj0

∂p
· δ

(dpji

dt

)

δ
(dpji

dt

)
≡ −ej(∇δφ − vzji

c
∇⊥δAz)

Here, δφ = φ − φ0, δAz = Az − Az0, and (φ0, Az0, fj0 ) are the equilibrium
solutions.

➪ The perturbed distribution function δfj is given by the weighted Klimontovich
representation

δfj =
Nj

Nsj

Nsj∑
i=1

wjiδ(x − xji)δ(p − pji)

where Nj is the total number of actual j’th species particles, and Nsj is the
total number of simulation particles for the j’th species.



Nonlinear δf Particle Simulation Method

➪ Maxwell’s equations are also expressed in terms of the perturbed quantities:

∇2δφ = −4π
∑

j

ejδnj

∇2δAz = −4π
c

∑
j

δjzj

δnj =
∫

d3pδfj(x, p, t) =
Nj

Nsj

Nsj∑
i=1

wjiS(x− xji)

δjzj = ej

∫
d3pvzδfj(x, p, t) =

ejNj

Nsj

Nsj∑
i=1

vzjiwjiS(x − xji)

where S(x− xji) represents the method of distributing particles on the grids.



Advantages of the δf method

➪ Simulation noise is reduced significantly.

❍ Statistical noise ∼ 1/
√

Ns.

❍ To achieve the same accuracy, number of simulation particles required by the
δf method is only (δf/f)2 times of that required by the conventional PIC
method.

➪ No waste of computing resource on something already known — f0.

➪ Moreover, make use of the known (f0) to determine the unknown (δf).

➪ Study physics effects separately, as well as simultaneously.

➪ Easily switched between linear and nonlinear operation.



The BEST Code

Application of the 3D multispecies nonlinear δf simulation method to PSR is
carried out using the Beam Equilibrium Stability and Transport (BEST) code
at the Princeton Plasma Physics Laboratory.

➪ Adiabatic field pusher for light particles (electrons).

➪ Solves Maxwell’s equations in cylindrical geometry.

➪ Written in Fortran 90/95 and extensively object-oriented.

➪ NetCDF data format for large-scale diagnostics and visualization.

➪ Achieved an average speed of 40µs/(particle×step) on a DEC alpha personal
workstation 500au computer.

➪ The code has been parallelized using OpenMP and MPI.

❍ NERSC: IBM-SP2 Processors.

❍ PPPL: Dec-α Processors.

➪ Achieved 2.0 × 1010 ion-steps + 4 × 1011 electron-steps for instability studies.



Nonlinear Properties of Equilibrium Proton Beam

➪ Single-species thermal equilibrium ion beam in a constant focusing field.

➪ Equilibrium properties depend on the radial coordinate r = (x2 + y2)1/2.

➪ Cylindrical chamber with perfectly conducting wall located at r = rw.

➪ Thermal equilibrium distribution function for the beam ion is given by

fb0(r, p) =
n̂b

(2πγbmbTb)3/2
exp

{
−H⊥

Tb

}
× exp

{
−(pz − γbmbβbc)2

2γ3
b mbTb

}

➪ As a benchmark test, system parameters are chosen to correspond to high-
intensity proton beam in PSR in the absence of background electrons.



Nonlinear Properties of

Stable Proton Beam Propagation

(a) Equilibrium Density (b) Equilibrium Space-Charge Potential

➪ Equilibrium solutions (φ0, Az0, fj0 ) solve the steady-state (∂/∂t = 0) Vlasov-
Maxwell equations with ∂/∂z = 0 and ∂/∂θ = 0.



Nonlinear Properties of

Stable Proton Beam Propagation

(a) Perturbed δn at t = 0τβ . (b) Perturbed δn at t = 3000τβ .

➪ Random initial perturbation with normalized amplitudes of 10−3 are intro-
duced into the system.

➪ The beam is propagated from t = 0 to t = 3000τβ , where τβ ≡ ω−1
βb .



Nonlinear Properties of

Stable Proton Beam Propagation

➪ Simulation results show that the perturbations do not grow and the beam
propagates quiescently, which agrees with the nonlinear stability theorem for
the choice of thermal equilibrium distribution function [PRL 81, 991 (1998)].



Body Modes by the BEST code

➪ Axisymmetric body modes with l = 0 and kz = 0 for a moderate-intensity
beam with sb ≡ ω̂2

pb/2γ
2
b ω2

βb = 0.44.

➪ First four body eigenmodes of the system at frequencies ω1 = 1.53 ωβb, ω2 =
2.98 ωβb, ω3 = 4.50 ωβb, and ω4 = 6.03 ωβb.

➪ Eigenfunction δφn(r) has n zeros when plotted as a function of r.

(a) Frequency spectrum (b) Radial mode structure



Surface Modes

➪ Linear surface modes for perturbations about a thermal equilibrium beam in
the space-charge-dominated regime, with flat-top density profile.

(a) Equilibrium Density (b) Equilibrium Space-Charge Potential



Surface Modes

➪ The surface modes can be destabilized by the electron-ion two-stream interac-
tion when background electrons are present.

➪ The BEST code, operating in its linear stability mode, has recovered well-
defined eigenmodes which agree with theoretical predications.

(a) Density Perturbation. (b) Potential Perturbation.



l = 1 Eigenmode in a Moderate-Intensity Proton Beam

➪ Generally, these is no analytical description of the eigenmodes in beams with
nonuniform density profiles.

➪ However, numerical result shows that eigenmode is localized in the region where
the density gradient is large.

(a) Equilibrium Density Profile (b) Mode Structure



Surface Modes

➪ For azimuthal mode number l = 1, the dispersion relation is given by

ω = kzVb ± ω̂pb√
2γb

√
1 − r2

b

r2
w

(1)

where rb is the radius of the beam edge, and rw is location of the conducting
wall. Here, ω̂2

pb = 4πn̂be
2
b/γbmb is the ion plasma frequency-squared, and

ω̂pb/
√

2γb w ωβb in the space-charge-dominated limit.

(a) ω/ωβb versus rw/rb (b) Spectrum for rw/rb = 2.2



Electron-Proton Two-Stream Instability

➪ When a background electron component is introduced with βe = Ve/c w 0,
the l = 1 “surface mode” can be destabilized for a certain range of axial
wavenumber and a certain range of electron temperature Te.

(a) t = 0 (b) t = 200/ωβb



Simulations of e-p Instability for PSR

➪ Illustrative PSR parameters:

❍ Space-charge-induced tune shift: δν/ν0 ∼ −0.020, ω̂2
pb/2γ

2
b ω2

βb = 0.079.

❍ Oscillation frequency (simulations): f ∼ 163MHz. Mode number at maxi-
mum growth n = 55 ∼ 65.

❍ Line densities: λb = 9.13 × 108cm−1, λe = 9.25 × 107cm−1, Tb⊥ = 4.41keV,
Te⊥ = 0.73keV, φ0(rw) − φ0(0) = −3.08 × 103Volts.

➪ Mode number dependence (kz = 2πn/L = n/R, R =ring radius):

❍ Only for a certain range of nVb/ωβbR can the collective mode of the beam
ions effectively resonate with the electrons and produce instability.

❍ For instability, electrons must physically overlap the region of the excited
eigenmode.

❍ Transverse electron energy distribution determines the radial extent of the
electron density profile.



Simulations of e-p Instability for PSR

➪ System parameters: ω̂2
pb/2γ

2
b ω2

βb = 0.079, Tb⊥/γbmbV
2
b = 3.61 × 10−6, and

f = n̂e/n̂b = 0.1. For the Proton Storage Ring (PSR) with γb = 1.85, ωβb =
4.07 × 107/s, the illustrative simulation parameters are:
rw = 5.0cm, rb = 1.7cm, re = 2.15cm, n̂b = 2.16 × 108cm−3,
Nb = 9.13 × 108cm−1, Ne = 9.25 × 107cm−1,
Tb⊥ = 4.41Kev, Te⊥ = 0.73Kev, φ0(rw) − φ0(0) = −3.08 × 103Volts.

➪ kzVb/ωβb dependence (kz = 2πn/L = n/R, R =ring radius):

❍ Only for a certain range of kzVb/ωβb can the collective mode of the beam ions
effectively resonate with the electrons and produce instability.

➪ Te⊥/Tb⊥ dependence:

❍ For instability, electrons must physically overlap the region of the eigenmode.

❍ Electrons are radially confined by the space charge potential of the beam ions.

❍ Transverse electron temperature determines the radial extent of the electron
density profile.



Instability Growth Rate with Te‖ = Tb‖ = 0

➪ The kzVb/ωβb and Te⊥/Tb⊥ dependences of the growth rate are qualitatively
consistent with the analytical results obtained for uniform-density beams.

(a)

(a) γ versus kzVb/ωβb

(b)

(b) γ versus Te⊥/Tb⊥



Cold Electrons with Te⊥/Tb⊥ = 0.018, Te‖ = Tb‖ = 0

➪ Electrons are relatively cold and localized in the beam center, and no instability
developed over 370ω−1

βb .

(a)

(a) Equilibrium Density

(b)

(b) Perturbation Time History



Warm Electrons with Te⊥/Tb⊥ = 0.13, Te‖ = Tb‖ = 0

➪ Electrons are sufficiently hot that the electron density profile overlaps that of
the beam ions, and the onset of a strong e-p instability is observed.

(a)

(a) Equilibrium Density

(b)

(b) Perturbation Time History



Growth Rate for Illustrative PSR Parameters

➪ Maximum growth rate depends on the normalized beam density n̂b/n̂b0 and
the initial axial momentum spread.
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➪ n̂b0 = 9.41× 108cm−3, corresponding to an average current of 35A in the PSR
experiment (ω̂2

pb/2γ
2
b ω2

βb = 0.079).

➪ A larger longitudinal momentum spread induces stronger Landau damping by
parallel kinetic effects and therefore reduces the growth rate of the instability.

➪ Higher beam intensity provides more free energy to drive a stronger instability.



Instability Threshold for Illustrative PSR Parameters

➪ Important damping mechanisms includes

 ❍ Longitudinal Landau damping by the beam ions.
 ❍ Stabilizing effects due to space-charge-induced tune spread.

➪ An instability threshold is observed in the simulations.
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➪ Larger momentum spread and smaller fractional charge neutralization imply a
higher density threshold for the instability to occur.



Long-Time Evolution of the e-p Instability

➪ Late-time nonlinear phase of e-p
instability.

➪ Late-time nonlinear growth ob-
served for system parameters
above marginal stability.

➪ Simulations show two phases to
the e-p instability.



Long-Time Evolution of the e-p Instability

➪ Late-time nonlinear phase of e-p
instability at twice the beam in-
tensity.

➪ Nonlinear growth to larger ampli-
tudes occurs on faster time scale.



Conclusions

➪ A 3D multispecies nonlinear perturbative particle simulation method has been
developed to study two-stream instabilities in intense charged particle beams
described self-consistently by the Vlasov-Maxwell equations.

➪ Introducing a background component of electrons, the two-stream instabil-
ity is observed in the simulations. Several properties of this instability are
investigated numerically, and are found to be in qualitative agreement with
theoretical predictions.

➪ For PSR parameters, the self-consistent simulations show that the e-p instabil-
ity has a dipole mode structure, and the growth rate is an increasing function
of proton density and fractional charge neutralization.

➪ For PSR parameters, the simulations show that an axial momentum spread
and the space-charge induced tune spread provide effective stabilization mech-
anisms for the e-p instability.

➪ Large scale parallel simulations have been carried out to determine scaling
properties of e-p instability with beam intensity and fractional charge neutral-
ization.



Conclusions

➪ The BEST code, a 3D multispecies perturbative particle simulation code, has
been tested and applied in different operating regimes.

➪ Simulation particles are used to follow only the perturbed distribution function
and self-fields. Therefore, the simulation noise is reduced significantly.

➪ Perturbative approach also enables the code to investigate different physics
effects separately, as well as simultaneously.

➪ The BEST code can be easily switched between linear and nonlinear opera-
tion, and used to study both linear stability properties and nonlinear beam
dynamics.

➪ These features provide PSR with very effective tool to investigate the electron-
proton two-stream instability, halo formation, and many other key problems
in nonlinear beam dynamics and accelerator physics.



Studies of Two-Stream Instability

– Future Plans

➪ Understand nonlinear dynamics of the two-stream instability, including
mode saturation, stabilization mechanisms, and ion and electron dynamical
response.

➪ Identify operating regimes for PSR and SNS that minimize the deleterious
effects of the two-stream instability and maximize the threshold beam intensity
for the onset of the two-stream instability.



Nonlinear δf Particle Simulation with

Self-field, Chromaticity, and Slip Factor

➪ Particle dynamics including self-field, chromaticity, and slip factor.

dx⊥
dt

= (γjmj)−1p⊥

dp⊥
dt

= −γjmj(1 +
ξjδpz

pz0j
)2ω2

βjx⊥ − ej(∇⊥φ − vz

c
∇⊥Az)

dz

dt
= Vj + (

1
γ2

j

− 1
γ2

tj

)
1

γjmj
δpz

dpz

dt
= −ej∇‖φ

➪ Weight functions wj are carried by the simulation particles, and the dynamical
equations for wj are derived from the definition of wj and the Vlasov equation.



dw

dt
= −(1 − w)

1
fj0

∂fj0

∂p
· δ

(dp

dt

)

δ
(dp

dt

)
≡ −ej(∇δφ − vz

c
∇⊥δAz)



Electromagnetic Simulation Using Darwin Model

➪ Darwin model ignores the transverse displacement current to eliminate fast
light waves.

➪ Nonlinear Vlasov-Maxwell equations in the six-dimensional phase space (x, p):

{ ∂

∂t
+ v · ∂

∂x
− [γjmjω

2
βjx⊥

+ ej(∇φ − pzj

γjmjc
∇⊥Az +

1
c

∂Az

∂t
êz)] · ∂

∂p

}
fj(x, p, t) = 0

and

∇2φ = −4π
∑

j

ej

∫
fj(x, p, t) d3p

∇2Az = −4π
c

∑
j

ej

∫
vzfj(x, p, t) d3p



Electromagnetic Simulation Using Darwin Model

➪ Equations of motion for the particles are given by

dxji

dt
= (γjmj)−1pji

dpji

dt
= −γjmjω

2
βjx⊥ji − ej(∇φ − pzj

γjmjc
∇⊥Az +

1
c

∂Az

∂t
êz)

➪ To eliminate the numerical instability associated with the ∂Az/∂t term, pzj is
advanced through the “canonical momentum” Pzj ≡ pzj + ejδAz/c.

dPzji

dt
= −ej[

∂φ

∂z
− 1

cγjmj
(Pzj − ejδAz/c)

∂Az

∂z
]

∇2δAz = −4π
∑

j

∫
ejPzj

γjmjc
δfj(x, p, t) d3p + 4π

∑
j

e2
jnj

γjmjc
δAz

pzji = Pzji − ejδAz/c



References

References

[1]R. C. Davidson, Physics of Nonneutral Plasmas (Addison-Wesley Publishing
Co., Reading, MA, 1990), and references therein.

[2]A. W. Chao, Physics of Collective Beam Instabilities in High Energy Accel-
erators (Wiley, New York, 1993).

[3]See, for example, Proceedings of the 1997 International Symposium on Heavy
Ion Inertial Fusion (Ed., I. Hofmann), Nuclear Instruments and Methods in
Physics Research A 415, pp. 1-508 (1998), and references therein.

[4]R. C. Davidson, Physics of Plasmas 5, 3459 (1998).

[5]R. C. Davidson, Physical Review Letters 81, 991 (1998).

[6]R. C. Davidson and C. Chen, Particle Accelerators 59,175 (1998).

[7]R. C. Davidson, H. Qin, and P. J. Channell, Physical Review Special Topics
on Accelerators and Beams 2, 074401 (1999); P. J. Channell, Physics of
Plasmas 6, 982 (1999).



[8]W. W. Lee, Q. Qian, and R. C. Davidson, Physics Letters A 230, 347 (1997);
Q. Qian, W. W. Lee, and R. C. Davidson, Physics of Plasmas 4, 1915 (1997).

[9]P. H. Stoltz, R. C. Davidson, and W. W. Lee, Physics of Plasmas 6, 298
(1999).

[10]H. Qin, R. C. Davidson, and W. W. Lee, Proceedings of the 1999 Particle
Accelerator Conference 3, 1626 (1999).

[11]S. M. Lund and Davidson, Physics of Plasmas 5, 3028 (1998).

[12]R. C. Davidson and S. Strasburg, Physics of Plasmas 7, in press (2000).

[13]R. C. Davidson, H. Qin, P. H. Stoltz, and T. -S. Wang, Physical Review
Special Topics on Accelerators and Beams 2, 054401 (1999), and references
therein.

[14]R. C. Davidson, H. Qin, and T. -S. Wang, Physics Letters A 252, 213 (1999).

[15]D. Neuffer, E. Colton, D. Fitzgerald, T. Hardek, R. Hutson, R. Macek, M.
Plum, H. Thiessen, and T. -S. Wang, Nucl. Instr. Methods Phys. Res. A321,
1 (1992).

[16]R. Macek, Proceeding of Workshop on Space Charge Physics in High In-
tensity Hadron Rings, American Institute of Physics Conference Proceedings
448, 116 (1998).



[17]H. Qin, R. C. Davidson, and W. W. Lee, Physical Review Special Topics –
Accelerators and Beams 3, 084401 (2000).

[18]H. Qin, R. C. Davidson, and W. W. Lee, Physics Letters A 272, 389 (2000).

[19]S. M. Lund, et al, Proceeding of the 19th International Linac Conference
(Chicago, Illinois, 1998).

[20]R. C. Davidson and H. Qin, Physics Letters A 270, 177 (2000).

[21]R. C. Davidson, H. Qin, I. Kaganovich, and W. W. Lee, Proceeding of the
13th International Symposium on Heavy Ion Inertial Fusion (San Diego, CA,
2000).


