International Workshop on Two-Stream Instabilities in Particle Accelerators and Storage Rings (Two-Stream 2001) at KEK, September 11-14, 2001

1

Measurement of Photoelectron Yield in KEKB LER

Y. Ohnishi*, T. Murakami, K. Kanazawa, M. Tanaka, M. Tejima High Energy Accelerator Research Organization(KEK)

*Email: yukiyoshi.onishi@kek.jp

Introduction

- Photoelectron effects cause beam blow-up in the positron ring is very serious for high current machine to achieve higher luminosity.
- What we can measure is photoelectrons reach at the collector.
 Not photoelectrons around the beam !
- These measurements can give the information for simulations

Photoelectron Detector

- Special vacuum chamber with photoelectron detector
- Solenoid coils
- Amplifier
- Power supply for the amplifier
- Cooling fan is used to keep temperature of power supply constant.

Location of Photoelectron Detector

- Photoelectron detector is located at 1.5 m downstream of a bending magnet.
- Bending radius: 16.3 m

5

• This measurement is AC. (\Longrightarrow DC)

Measurement of Photoelectron Yield

- Pick-up output voltage(Vout) as a function of time
- Single shot
- Filling pattern:
 - 4/64/4 (180 mA)
 - 1/1153/4 (660 mA)
 - 1 bucket spacing is 2 nsec.
- Revolution is about 10 μsec.
- Abort gap with no bunch is 1 μsec.

Filling patterns

Measurement of Photoelectron Yield (cont'd)

- Isolated bunches (*pilot* bunch) can be put in the abort gap.
- Signal from photoelectrons due to synchrotron light emitted from single bunch.
- Decay constant is 70 nsec.
- Decay time constant is needed to extract photoelectron current.

9

Measurement of Photoelectron Yield (cont'd)

• Photoelectron yield as a function of time can be reproduced by calculation from a signal shape.

10

Measurement of Photoelectron Yield (cont'd)

- Peak-to-peak voltage of output signal(Vout) as a function of beam current
- Single shot
- Suppressor bias: 0 V
- Collector bias: 0 V
- Photoelectron yield: 1 μA at 550 mA beam current for 1/1153/4 filling pattern
- Photoelectron/beam current: 1.8 nA/mA

Photoelectron Yield and Solenoid field

- Effect of the polarity of solenoid field
- Pick-up voltage clearly depends on the polarity.
- Signal from pick-up is caused by photoelectrons.
- Synchrotron light hits the outer wall and photoelectrons are emitted.
- Trajectories of photoelectrons are different between + and – polarity of solenoid field.

Energy Spectra of Photoelectrons

- Beam current:
 - 620~530 mA
- Filling pattern:
 - 1/1153/4
- Collector bias: +2 V
 - To make measurement of electron yield stable.
- Suppressor bias:
 - $0 \sim -300 \text{ V}$
- Large excess was found at 35 eV (Or large dips can be found at 25 and 50 eV?).

Summary

- We have developed photoelectron detector and readout electronics.
- Signals from photoelectrons were observed as a function of time.
- We measured photoelectron yield. (Need to consider detector acceptance and solenoid field.)
- Energy spectra of photoelectrons:
 - Large excess was observed at 35 eV.

Summary (cont'd)

- Latest version of readout electronics (T. Murakami)
- Amplifier with power supply (combined type)
- Readout system is much smaller than prototype and easy to take.
- Price is \$200. (depends on number of productions)