
Simulation of fast ion instability at Super KEKB

K. Ohmi, M. Tawada, KEK 9/13/2001 Two-Stream2001

- Introduction
- Simulation model
- Simulation result
- Summary

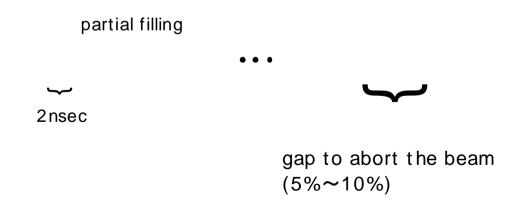
- The electron beam in a storage ring creates ions by ionizing the residual gas in the vacuum chamber. The interaction of an electron beam with these ions results in transverse oscillations which are driven mutually.
- Super KEKB is upgrade plan of KEKB.
- Since Super KEKB has the high beam current of 10A, the ion-beam instability could be the problem to achieve a high luminosity.

Related parameters

	unit	KEKB	Super KEKB
Energy	GeV	8	3.5
Ι	А	1.1 (0.75)	10
Ne		1.4e10 (4.0e10)	1.3e11
total vacuum pressure	nTorr	1	2.3
Luminosity	/cm ² /sec	1E34	1E35
No. of bunch		∽5000 (1153)	∽5000
damping time of feedback	msec	0.5	0.5

() is present value for KEKB

Estimation by Linear theory


(Keil-Zotter)

	I [A]	$\tilde{\omega_i}\omega_0$	η	•
KEKB	1.1	139	8.1E-7	0.192
Super KEKB	10	299	2E-8	5

 ω_i : ion frequency

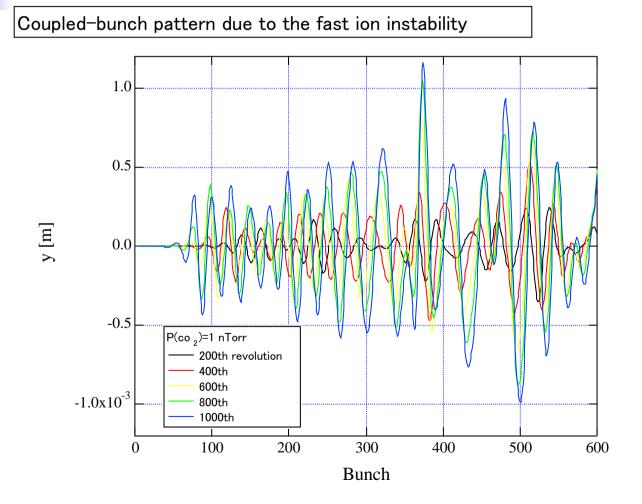
- ω_0 : revolution frequency
- η : neutralization factor (=N_ith/N_e)

- Since η.. is extremely low, it is possible to cause an instability by ions which are produced and trapped in only one revolution.
- Super KEKB has the gap to abort the beam. The produced ions can be cleared during this gap passage.

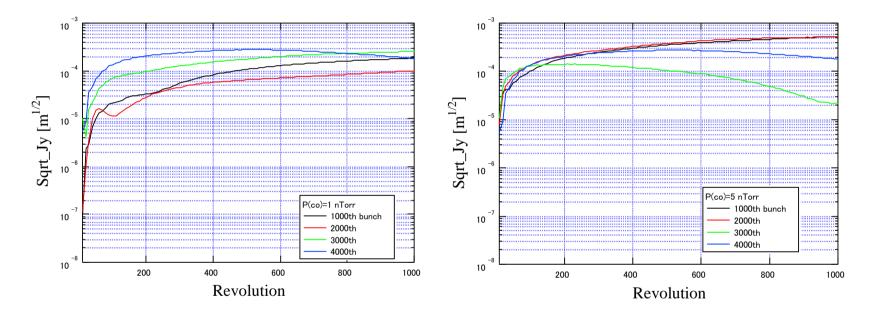
 \rightarrow Fast ion type instability could be the problems.

- based on weak-strong model
- •e- beam: rigid gaussian
- ion: macro particles
- (The number of ions increase.)
- •2 -D code (The effect of bunch length and the synchrotron motion are not considered.)
- •One collision point in the ring.

Simulation model

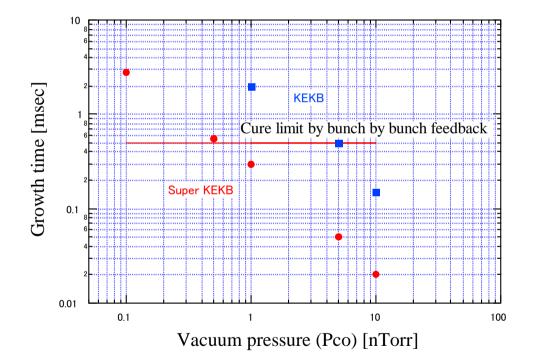

eq. of motion

$$\frac{d^{2}\overline{x_{e}}}{ds^{2}} + K(s)\overline{x_{e}} = \frac{2r_{e}}{\gamma} \sum_{a}^{N_{im}} F(\overline{x_{e}} - x_{i,j})$$


$$\frac{d^{2}x_{i,j}}{dt^{2}} = \frac{2N_{e}r_{e}c^{2}}{M_{i}/m_{e}} F(x_{i,j} - \overline{x_{e}})$$

$$F_{y}(x) + iF_{x}(x) = \sqrt{\frac{\pi}{2(\sigma_{x}^{2} - \sigma_{y}^{2})}} \left[w(\frac{x + iy}{\sqrt{2(\sigma_{x}^{2} - \sigma_{y}^{2})}}) - \exp(-\frac{x^{2}}{2\sigma_{x}^{2}} - \frac{y^{2}}{2\sigma_{y}^{2}})w(\frac{\sigma_{x}}{\sqrt{2(\sigma_{x}^{2} - \sigma_{y}^{2})}}) \right] \delta(s)$$

Simulation result



Simulation Result (Time evolution of the amplitude)

 Growth time is about 30 turns (0.3 msec) and 5 turns (0.05 msec) for 4800 bunch at the Pco= 1 nTorr and 5 nTorr, respectively.

Relation between growth time and vacuum pressure at Super KEKB

Summary

- We have performed a simulation of fast ion instability at Super KEKB.
- The growth times of each bunch in the train were obtained in Super KEKB. The growth time was about 30 turns (0.3 msec) at the Pco=1 nTorr for 4800 bunch train.
- Since the damping rate of the feedback is designed to be 0.5 msec, the vacuum pressure for Super KEKB should be less than Pco=0.5nTorr.