Simulation of Multipacting Effects

Contents

- Introduction
- Simulation
 - Model, Method
- Results
 - Comparison with Observation
- Summary
Introduction

KEKB Ring

- Positron Ring (LER)
 - Energy: 3.5 GeV
 - Current: ~1 A

- Non-linear pressure rise against the beam current has been observed.

Layout of KEKB main ring.
Example - 1

- Bunch fill pattern dependence

The symbol of 4/60/8, for an example, means that the beam consists of 4 trains of 60 bunches filled with every 8 RF buckets spacing (16 ns).
Example - 2

- Magnetic Field Dependence

Beam current dependence of pressures for with and without solenoid field of about 10 G.
Characteristics

(1) The pressure rise is not due to only the synchrotron radiation, where the pressure is in proportion to the beam current.

(2) The different bunch patterns and the bunch currents give the different behaviors of pressure rise.

(3) The non-linearity is strong at the place without magnetic field (the straight section). The non-linearity reduces by applying a solenoid magnetic field of several gausses.

(4) The pressure increases rapidly at some beam current.

Gas desorption due to the electron multipacting.
Purpose

- Propose a simple simulation method assuming that the non-linear pressure rise is due to the multipactoring of the electrons. Based idea was given by O. Gröbner (CERN, 1977)
- Give some information on the beam size blow up issues. (The behavior is similar to that of the blow up of the vertical beam size as shown later)
Simulation Model

Here, calculate average σ_e and τ_e for many electrons.

Electron emission

→ Acceleration by e^+ bunches
→ Bombardment to wall with a high energy
→ Secondary electron emission
The pressure is proportional to a total of generated electrons in a train (ESD).

\[
P \propto I_{\text{bunch}} \times N_{\text{train}} \times \sum_{i=1}^{n_{bt}} \frac{1-\sigma_{e}^{-i-1}}{1-\sigma_{e}}
\]

\(I_{\text{bunch}}\): bunch current

\(N_{\text{train}}\): number of train

\(n_{bt}\): bunch number in a train
Assumptions

- Initial energy of emitted electrons is in the range $2 \sim 8$ eV.
- $r_b = 200 \, \mu\text{m}$, $l_b = 20 \, \text{mm}$ (about $3 \, \sigma_z$), and $s_b = 4 - 12$ RF buckets (1 bucket = 2 ns). Similar results were obtained for Gaussian beam.
- No axial motion (two dimensions).
- ESD coefficient, i.e., the number of gas molecules emitted for one electron, is constant.
- Chamber is a circular pipe.
- Emitted electrons follows the cosine law.
- Tracking starts at a random time between adjoining bunches.
- Electrons and gas molecules inside the chamber is completely cleared during a train gap.
- A simplified typical secondary electron yield is used.
Assumed σ_e (secondary electron yield):

Assumed energy dependence of the secondary yield, σ_e, for copper surface.
Example of Trajectory - 1

- No Magnetic Field

4/60/4
100 mA

4/60/4
200 mA
Example of Trajectory - 2

- With Solenoid Field

4/60/4
200 mA
Bz = 5 G

4/60/4
200 mA
Bz = 20 G
Result - 0

- Typical Result
The behavior is very similar to observation although the corresponding current is somewhat different.
Solenoid (Local)

- Solenoid around Gauge

Solenoids wounded around the LER chamber above a CCG.
Result - 2

- Magnetic Field Dependence

Solenoid field about 10 G reduce the non-linear behavior.
Result - 3

- Dependence on Magnetic Field Strength

Observed (left) and calculated (right) change of the pressures against the solenoid field strength.
C-yoke type permanent magnets (ϕ30) around the beam chamber (until last summer).
Result - 4

- Effect of C-yoke

For simplicity, the calculation was performed for solenoid field.
Solenoid (whole ring)

Last summer solenoids were winded mainly at arc sections.
Effect of Solenoid

The difference for field strength is not so clear. The tendency that the pressure does not change for the field larger than several G is same.

4 A -> ~10 G at gauge
The aging behavior can be explained by that of σ_e and ESD coefficient.
A resonance seems to occur at a particular combination of fill pattern and chamber radius etc. The resonance was not observed in KEKB.
Resonance Behavior

- Calculation
Resonance Behavior

- Example at SLAC LER

by F.-J. Decker
10-/Aug/2000
Relation to Beam Size Blow Up

- Blow up of Vertical Beam Size

The behaviors are very similar to those of pressures.
Relation to Beam Size Blow up

- Dependence on Solenoid

The change from 0A to 1A is biggest for both case.
Summary

(1) The non-linear pressure behavior has been observed in the KEKB LER (positron ring).

(2) A simple 2D simulation was performed assuming that the pressure behavior occurs by the electron multipactoring.

(3) The results reproduced the observed pressure dependence on the bunch fill pattern and the external magnetic field.

(4) The pressure behavior seems to have some relation to the blow up of the beam size.

(5) Further study is necessary to clarify the non-linear pressure rise in detail and to investigate the relation to the blow up of the positron beam size.
e- and e+